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Abstract
We present a variational study of the helicity moduli of an anisotropic quantum
three-dimensional (3D) XY model of YBCO in its superconducting state.
It is found that both the ab-plane and the c-axis helicity moduli, which
are proportional to the inverse square of the corresponding magnetic field
penetration depth, vary with temperature T as T 4 in the zero temperature
limit. Moreover, the c-axis helicity modulus drops with temperature much faster
than the ab-plane helicity modulus because of the weaker Josephson couplings
along the c-axis compared to those along the ab-plane. These findings are in
disagreement with experiments on high quality samples of YBCO.

1. Introduction

In a recent paper [1], following the suggestions of Roddick and Stroud [2] and of Emery and
Kivelson [3–6], we have examined the possibility that a classical XY model might explain
both the ab-plane and the c-axis electromagnetic response of optimally doped single crystal
YBCO [7]. A Monte Carlo study was applied to a bilayer model for YBCO in which all
the microscopic degrees of freedom are assumed to be integrated out except for the phase
of the superconducting order parameter and all of the phase dynamics results from Josephson
couplings within the layers and between the layers grouped in a stack of bilayers. We calculated
the temperature (T ) dependence of the helicity moduli which in this model correspond to the
inverse square of the magnetic field penetration depths λab(T ), λc(T ), i.e. to the superfluid
densities ns,ab(T ), ns,c(T ). Our results were in sharp contrast with experiment [7]: while
we found that both ab-plane and the c-axis superfluid densities decrease linearly with T at
low temperatures, experimentally only the ab-plane superfluid density drops linearly with
temperature at low T . The observed c-axis penetration depth λc(T ) never has the linear
temperature dependence found in ab-plane.
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Here we extend the model of [1] to include the quantum effects associated with the
Coulomb charging energy due to the excess number of Cooper pairs within coarse-grained
regions with linear dimensions of the order of the superconducting coherence length. As we
are primarily interested in the low temperature helicity moduli of this anisotropic, but three-
dimensional, model we apply the variational self-consistent phonon approximation of Wood
and Stroud [8]. The inhomogeneity of Josephson couplings and layer spacings perpendicular
to the layers makes the calculation of the z-axis helicity modulus a nontrivial extension of the
work by Roddick and Stroud [2]. Moreover we specifically address the analytic form (power
law behaviour) of the temperature dependence in the in-plane and out-of-plane superfluid
densities by calculating the relevant weighted phase phonon densities of states.

The rest of the paper is organized as follows. In section 2 we discuss our model and
derive the expressions for the helicity moduli within the self-consistent phonon approximation.
Section 3 contains our numerical results for the helicity moduli, an analysis of their low
temperature behaviour including the relevant analytical results for weighted phase phonon
densities of states and our conclusions.

2. The model and helicity moduli

We consider an anisotropic quantum 3D XY model for a system with bilayer structure described
by the Hamiltonian

Ĥ = T̂ + V̂ab + V̂c, (1)

T̂ = U

2

∑
l,s,i

[
−2i

d

dφi,l,s

]2

, (2)

V̂ab =
∑

l,s,〈i, j〉
[J1(1 − cos(φi,l,s − φ j,l,s))], (3)

V̂c =
∑
l,i

[J⊥(1 − cos(φi,l,2 − φi,l,1)) + J ′
⊥(1 − cos(φi,l+1,1 − φi,l,2))]. (4)

Here, the sum over l runs over a stack of bilayers, the sum over s = 1, 2 runs over two layers
in a given bilayer, 〈i, j〉 denotes the nearest neighbours within a single layer, the sum over i
runs over the sites in a given layer, and φi,l,s is the phase of the order parameter on site i of
the layer s in the bilayer l. T̂ is the charging energy associated with excess number of Cooper
pairs on site (i, l, s) [8], while V̂ab and V̂c describe the Josephson coupling energy within the
layers and between the layers, respectively. The model considered here differs from the one
examined by Roddick and Stroud [2] in that the Josephson coupling constant between two
layers within a given bilayer J⊥ and their spacing cb are different from the Josephson coupling
constant between layers in two adjacent bilayers J ′

⊥ and the bilayer spacing c′. As a result,
the calculation of the helicity modulus γzz along the direction perpendicular to the bilayers is
a nontrivial generalization of the work by Roddick and Stroud [2].

In this work we apply the self-consistent phonon approximation [8] to the low temperature
thermodynamics implied by the Hamiltonian Ĥ. One would expect that for a three-dimensional
model this approach provides a reasonable description of the low temperature thermodynamics,
at least for not too large values of U/ max{J1, J⊥, J ′

⊥}. However, one cannot a priori rule out
a possibility that quantum Monte Carlo treatment reveals, in particular in the limit of high
anisotropy, a qualitatively different behaviour of the type found by Jacobs et al [9] in the
purely two-dimensional case. We leave the quantum Monte Carlo treatment of our model for
future investigations.
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In the variational self-consistent phonon approach the trial free energy has the form

Ft = Fh − 〈Ĥ − Ĥh〉h, (5)

where

Ĥh = T̂ + V̂ (h)

ab + V̂ (h)
c , (6)

V̂ (h)

ab =
∑

l,s,〈i, j〉

K1(T )

2
(φi,l,s − φ j,l,s)

2, (7)

V̂ (h)
c =

∑
l,i

[
K⊥(T )

2
(φi,l,2 − φi,l,1)

2 +
K ′

⊥(T )

2
(φi,l+1,1 − φi,l,2)

2

]
, (8)

〈· · ·〉h denotes the statistical average with respect to the quasi-harmonic Hamiltonian Ĥh with
temperature dependent ‘spring constants’, and Fh is the Helmholtz free energy defined by
the Hamiltonian Ĥh. The values of K1(T ), K⊥(T ) and K ′

⊥(T ) are determined from self-
consistency equations which result from minimizing the trial free energy Ft .

Transforming to the normal modes and using 〈cos(φ − φ′)〉h = Re〈exp(i(φ − φ′))〉h

together with Mermin’s theorem [10] we obtain

Ft = kBT
∑

s=1,2

∑
k

ln

(
2 sinh

h̄ωs(k)

2kBT

)
+ 4N

[
J1(1 − e−(1/2)D1) − 1

2
K1 D1

]

+ N{[J⊥(1 − e−(1/2)D⊥) − 1
2 K⊥D⊥] + [J ′

⊥(1 − e−(1/2)D′⊥) − 1
2 K ′

⊥ D′
⊥]} (9)

and

K1(T ) = J1e−(1/2)D1(T ), (10)

K⊥(T ) = J⊥e−(1/2)D⊥(T ), (11)

K ′
⊥(T ) = J ′

⊥e−(1/2)D′
⊥(T ), (12)

where

D1(T ) = 1

N

∑
s=1,2

∑
k

(sin2(kxa/2) + sin2(kya/2))
h̄

2Mωs(k)
coth

h̄ωs(k)

2kBT
, (13)

D⊥(T ) = 1

N

∑
s=1,2

∑
k

h̄

2Mωs(k)

×
[

1 + (−1)s K⊥ + K ′
⊥ cos(kzc)√

(K⊥ + K ′
⊥)2 − 4K⊥K ′

⊥ sin2(kzc/2)

coth
h̄ωs(k)

2kBT

]
, (14)

D′
⊥(T ) = 1

N

∑
s=1,2

∑
k

h̄

2Mωs(k)

×
[

1 + (−1)s K⊥ cos(kzc) + K ′
⊥√

(K⊥ + K ′
⊥)2 − 4K⊥K ′

⊥ sin2(kzc/2)

coth
h̄ωs(k)

2kBT

]
, (15)

ω1,2 =
{

2

M

[
2K1(sin2(kx a/2) + sin2(kya/2)) +

K⊥ + K ′
⊥

2

∓ 1
2

√
(K⊥ + K ′

⊥)2 − 4K⊥K ′
⊥ sin2(kzc/2)

]}1/2

. (16)

The sums over k run over the first Brillouin zone (FBZ), N is the number of unit cells and
M = h̄2/(4U). Equations (9)–(16) can be solved iteratively at fixed temperature for a given
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set of the bare coupling constants J1, J⊥, J ′
⊥ and for a given Coulomb parameter U . In (16)

index 1 denotes the acoustic phase phonon dispersion and index 2 denotes the optic one.
When a uniform vector potential A is applied its effect on the Hamiltonian is to shift the

phase difference between points r1 and r2 by A1,2 = 2πA · (r2 − r1)/�0, where �0 = hc/2e
is the flux quantum. For example, if A is perpendicular to the bilayers φi,l,2 − φi,l,1 and
φi,l+1,1 − φi,l,2 in equations (4) and (8) are replaced by φi,l,2 − φi,l,1 + (2π/�0)cb A and
φi,l+1,1 − φi,l,2 + (2π/�0)c′ A, respectively. As a result, for A perpendicular to the bilayers the
quasi-harmonic Hamiltonian, (6)–(8), takes the form

Ĥh(A) = Ĥh(0) + Ĥ ′(A) (17)

Ĥ ′(A) = 2π

�0
AN(K⊥cb − K ′

⊥c′)(φk=0,2 − φk=0,1) (18)

where a constant term, proportional to A2, has been dropped and φk,s is the Fourier transform
of the phase variable φl,s defined on Bravais lattice sites l (s = 1, 2).

The computation of the helicity modulus along the direction perpendicular to the
bilayers requires even more care than in the classical case [1] because ∂ Ĥh(A)/∂ A does
not commute with Ĥh(A) (see equations (17), (18)) and therefore ∂ exp(−β Ĥh(A))/∂ A �=
−β(∂ Ĥh(A)/∂ A) exp(−β Ĥh(A)). Hence the helicity modulus d〈 Ĵ(A)〉h,A/d A|A=0, where
Ĵ (A) is the current operator through a particular bond perpendicular to the layers and
〈· · ·〉h,A is the usual quantum statistical average given by Ĥh(A), is not given by the standard
fluctuation-type formula 〈d Ĵ(A)/d A|A=0〉h,A=0 − (1/kBT )〈 Ĵ (0)∂ Ĥh(A)/∂ A|A=0〉h,A=0 +
(1/kBT )〈 Ĵ (0)〉h,A=0〈∂ Ĥh(A)/∂ A|A=0〉h,A=0.

Instead, we compute the average current 〈 Ĵ (A)〉h,A �=0 to the lowest order in A using
perturbation theory, and evaluate the helicity modulus from d〈 Ĵ(A)〉h,A �=0/d A|A=0. Focusing
on a bond between two layers in a bilayer (strong bond) we have [1]

Ĵs(A) = J⊥ sin(φi,l,2 − φi,l,1 + (2π/�0)cb A). (19)

Writing exp(−β Ĥh(A)) = exp(−β Ĥh(0)Û(β, A) we get the equation of motion
∂Û(β, A)/∂β = Ĥ ′(β, A)Û(β, A), Ĥ ′(β, A) = exp(β Ĥh(0))Ĥ ′(A) exp(−β Ĥh(0)), and the
boundary condition Û(0, A) = 1. Thus, to the lowest order in A we have

Û(β, A) = 1 −
∫ β

0
dτ Ĥ ′(τ, A)Û(τ, A) ≈ 1 −

∫ β

0
dτ Ĥ ′(τ, A).

Using this result, 〈sin(φ − φ′)〉h,A �=0 = (1/i) Im〈exp(i(φ − φ′))〉h,A �=0 and the operator
identities

b̂ec(b̂+b̂†) = 1

c

∂

∂α
ec(αb̂+b̂†)|α=1 +

c

2
ec(b̂+b̂†) (20)

b̂†ec(b̂+b̂†) = 1

c

∂

∂α
ec(b̂+αb̂†)|α=1 − c

2
ec(b̂+b̂†) (21)

valid for any two operators b̂ and b̂† such that [b̂, b̂†] = 1, we find to the lowest order in A

〈 Ĵs(A)〉h,A �=0 = A
2π

�0

K⊥(T )K ′
⊥(T )

K⊥(T ) + K ′
⊥(T )

(cb + c′). (22)

Thus the z-axis helicity modulus of our model in quasi-harmonic approximation is given by

γzz(T ) = 2π

�0

K⊥(T )K ′
⊥(T )

K⊥(T ) + K ′
⊥(T )

(cb + c′). (23)

Needless to say, we get the same result for γzz(T ) by computing the average current along the
weak bond, i.e. the one between the bilayers, as expected from Kirchhoff’s first law (note the
symmetry of expression (23) under the exchange of (K⊥, cb) and (K ′

⊥, c′)).
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Another way to write our central result equation (23),which is intuitively appealing,would
be

γzz(T ) = 2π

�0
K⊥,eff (T )(cb + c′), (24)

where
1

K⊥,eff
= 1

K⊥
+

1

K ′
⊥

. (25)

Equation (25) gives the effective spring constant for two linear springs with constants K⊥ and
K ′

⊥ which are connected in series. The lattice parameter in the direction perpendicular to the
layers is cb +c′. The form given by equations (24) and (25) is analogous to what one finds using
a quasi-harmonic approximation for a lattice without basis [2], e.g. for the in-plane helicity
modulus of our model

γxx (T ) = 2π

�0
K1(T )a. (26)

In that case the helicity modulus is essentially the stiffness with respect to the phase twist on
neighbouring sites. We note that within the quasi-harmonic approximation γzz(T ) does not
depend on the relative size of the bond lengths cb and c′ (see equations (10)–(16), (23)), and
the z-axis lattice parameter c = cb + c′ enters only implicitly as kzc in the Brillouin zone sums.

In conclusion of this section we note that if one takes first the classical limit h̄ → 0 and then
the zero temperature limit T → 0 in equations (10)–(16), (23) one recovers the classical results
obtained previously for the bilayer model using the low temperature spin-wave expansion [1].

3. Numerical results and conclusions

We have computed the helicity moduli γzz(T ) and γxx (T ) for different choices of the bare
coupling constants J1, J⊥, J ′

⊥ and since they give qualitatively very similar results we present
here only the data for a single set of parameters J1 = 1, J⊥ = 0.1, and J ′

⊥ = 0.001. The value
of Josephson coupling between the layers of a bilayer is taken to be one order of magnitude
smaller than the in-plane Josephson coupling and the value of Josephson coupling between
bilayers J ′

⊥ is two orders of magnitude smaller than J⊥. We have considered five values of
the Coulomb repulsion parameter U = 10−6, 10−3, 10−2, 10−1 and 1 (in units of the ab-plane
coupling J1). Since the helicity modulus is proportional to the inverse square of the magnetic
field penetration depth λ(T ) [2], we present our results for the helicity moduli in figure 1 as
λ2(0)/λ2(T ) as a function of T . We did not attempt to determine the transition temperature
Tc for various values of U as it is unlikely that the self-consistent phonon approximation
treats vortex–antivortex pairs close to Tc correctly, and we are primarily interested in the low
temperature dependence of the helicity moduli.

We point out that in the zero temperature limit γzz(T ) and γxx (T ) are not linear in T for
any finite U . It is easy to show that in the limit T → 0 both helicity moduli vary as T 4. Indeed,
the expressions for D1(T ), D⊥(T ) and D′

⊥(T ), which determine the temperature dependences
of γxx(T ) and γzz(T ), can be conveniently written in terms of various weighted phase phonon
densities of states

D1(T ) =
∫ +∞

0
dω [F (1)

1 (ω) + F (2)
1 (ω)]

h̄2

2Mω
coth

ω

2kBT
, (27)

F (s)
1 (ω) = v

(2π)3

∫
FBZ

d3k (sin2(kxa/2) + sin2(kya/2))δ(3)(ω − h̄ωs(k)), s = 1, 2,

(28)
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J1=1, J⊥=0.1, J’⊥=0.001

Figure 1. The temperature dependence of the helicity moduli for different values of the Coulomb
repulsion parameter U . The top group of five curves are the ab-plane helicity moduli for different
values of U , and the bottom group of curves are the corresponding c-axis helicity moduli.

D⊥(T ) =
∫ +∞

0
dω [F (1)

⊥ (ω) + F (2)
⊥ (ω)]

h̄2

2Mω
coth

ω

2kBT
, (29)

F (s)
⊥ (ω) = v

(2π)3

∫
FBZ

d3k

[
1 + (−1)s K⊥ + K ′

⊥ cos(kzc)√
(K⊥ + K ′

⊥)2 − 4K⊥K ′
⊥ sin2(kzc/2)

]

× δ(3)(ω − h̄ωs(k)), s = 1, 2, (30)

D′
⊥(T ) =

∫ +∞

0
dω [F ′(1)

⊥ (ω) + F ′(2)
⊥ (ω)]

h̄2

2Mω
coth

ω

2kBT
, (31)

F ′(s)
⊥ (ω) = v

(2π)3

∫
FBZ

d3k

[
1 + (−1)s K⊥ cos(kzc) + K ′

⊥√
(K⊥ + K ′

⊥)2 − 4K⊥K ′
⊥ sin2(kzc/2)

]

× δ(3)(ω − h̄ωs(k)), s = 1, 2, (32)

where v = a2c is the volume of the unit cell.
We have computed F (s)

1 , F (s)
⊥ , F ′(s)

⊥ , s = 1, 2, numerically using the tetrahedron
method [11]. At low temperatures it is the frequency dependence of the acoustic phase phonon
weighted densities of states F (1)

1 , F (1)

⊥ and F ′(1)

⊥ that determines the temperature dependence of
D1(T ), D⊥(T ), D′

⊥(T ), and thereby of K1(T ), K⊥(T ), K ′
⊥(T ) (equations (10)–(12)),which in
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turn determine the temperature dependences of the helicity moduli (equations (23) and (26)).
In the limit ω → 0 we find that because of the weighing factors F (1)

1 , F (1)
⊥ and F ′(1)

⊥ are
all proportional to ω4 (the coefficients are a1 = √

2(K⊥ + K ′
⊥)/(U K⊥K ′

⊥)/27π23(U K1)
2,

a⊥ = a1(2(K1/(K⊥ + K ′
⊥)(K ′

⊥/K⊥))), and a′
⊥ = a⊥(K⊥/K ′

⊥)2, respectively). Then,
it is easy to see, by rescaling the integration variables in equations (27), (29), (31), that
D1(T ) − D1(0) ∝ T 4, etc. After expanding, one finds that both helicity moduli decrease
with T as T 4 in the zero temperature limit. We note that Xiang and Wheatley [12] found
T 5-dependence of the c-axis superfluid density, which is proportional to γzz(T ), due to an
entirely different physical mechanism than the one considered in the present work.

The results shown in figure 1 are qualitatively different from what is found experimentally
on single crystals of bilayer compound of optimally doped YBCO [7] (see figure 2 in [7]).
While experimentally the ab-plane helicity moduli are linear in T at low temperatures we
obtain T 4-dependence in the limit T → 0 for any finite U . Roddick and Stroud [2] found (for
a one-layer model of YBCO) that including dissipation through coupling to an ohmic heat bath
restores the linearity of helicity moduli (presumably in all directions). We did not consider
such coupling in this work. Physically the dissipation results from quasiparticle degrees of
freedom [13], and we have discovered recently [14] that the effect of nodal quasiparticles on
phase fluctuations in a d-wave superconductor might render the XY model type of description
of such a system meaningless in the limit T → 0. Nevertheless, the biggest discrepancy
between the experiments [7] and our results in figure 1 is that the calculated γzz(T )/γzz(0)

decreases much faster with temperature than the calculated γxx (T )/γxx(0). This feature was
also present in our Monte Carlo study of the classical version (U = 0) of the same model [1]
and in either case it is a direct consequence of the weaker Josephson couplings in the direction
perpendicular to the layers compared to the in-plane Josephson coupling. Dissipation, treated
as in [2], will not affect that result.

In conclusion, neither a classical nor a quantum-mechanical XY model (at least in the
self-consistent phonon approximation) can consistently account for both ab-plane and c-axis
electrodynamics of YBCO observed in experiments [7].
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[1] Mitrović B, Bose S K and Samokhin K 2003 J. Phys.: Condens. Matter 15 2207
[2] Roddick E and Stroud D 1995 Phys. Rev. Lett. 74 1430
[3] Emery V J and Kivelson S A 1995 Phys. Rev. Lett. 74 3253
[4] Emery V J and Kivelson S A 1995 Nature 374 434
[5] Emery V J and Kivelson S A 1998 J. Phys. Chem. Solids 59 1705
[6] Carlson E W, Kivelson S A, Emery V J and Manousakis E 1999 Phys. Rev. Lett. 83 612
[7] Hosseini A, Kamal S, Bonn D A, Liang R and Hardy W N 1998 Phys. Rev. Lett. 81 1298
[8] Wood D M and Stroud D 1982 Phys. Rev. B 25 1600
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